Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Budget of tropospheric ozone during TOPSE from two chemical transport models

Identifieur interne : 000204 ( PascalFrancis/Corpus ); précédent : 000203; suivant : 000205

Budget of tropospheric ozone during TOPSE from two chemical transport models

Auteurs : L. K. Emmons ; P. Hess ; A. Klonecki ; X. Tie ; L. Horowitz ; J.-F. Lamarque ; D. Kinnison ; G. Brasseur ; E. Atlas ; E. Browell ; C. Cantrell ; F. Eisele ; R. L. Mauldin ; J. Merrill ; B. Ridley ; R. Shelter

Source :

RBID : Pascal:03-0384443

Descripteurs français

English descriptors

Abstract

[1] The tropospheric ozone budget during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign has been studied using two chemical transport models (CTMs): HANK and the Model of Ozone and Related chemical Tracers, version 2 (MOZART-2). The two models have similar chemical schemes but use different meteorological fields, with HANK using MM5 (Pennsylvania State University, National Center for Atmospheric Research Mesoscale Modeling System) and MOZART-2 driven by European Centre for Medium-Range Weather Forecasts (ECMWF) fields. Both models simulate ozone in good agreement with the observations but underestimate NOx. The models indicate that in the troposphere, averaged over the northern middle and high latitudes, chemical production of ozone drives the increase of ozone seen in the spring. Both ozone gross chemical production and loss increase greatly over the spring months. The in situ production is much larger than the net stratospheric input, and the deposition and horizontal fluxes are relatively small in comparison to chemical destruction. The net production depends sensitively on the concentrations of H2O, HO2 and NO, which differ slightly in the two models. Both models underestimate the chemical production calculated in a steady state model using TOPSE measurements, but the chemical loss rates agree well. Measures of the stratospheric influence on tropospheric ozone in relation to in situ ozone production are discussed. Two different estimates of the stratospheric fraction of O3 in the Northern Hemisphere troposphere indicate it decreases from 30-50% in February to 15-30% in June. A sensitivity study of the effect of a perturbation in the vertical flux on tropospheric ozone indicates the contribution from the stratosphere is approximately 15%.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 108
A06       @2 D8
A08 01  1  ENG  @1 Budget of tropospheric ozone during TOPSE from two chemical transport models
A11 01  1    @1 EMMONS (L. K.)
A11 02  1    @1 HESS (P.)
A11 03  1    @1 KLONECKI (A.)
A11 04  1    @1 TIE (X.)
A11 05  1    @1 HOROWITZ (L.)
A11 06  1    @1 LAMARQUE (J.-F.)
A11 07  1    @1 KINNISON (D.)
A11 08  1    @1 BRASSEUR (G.)
A11 09  1    @1 ATLAS (E.)
A11 10  1    @1 BROWELL (E.)
A11 11  1    @1 CANTRELL (C.)
A11 12  1    @1 EISELE (F.)
A11 13  1    @1 MAULDIN (R. L.)
A11 14  1    @1 MERRILL (J.)
A11 15  1    @1 RIDLEY (B.)
A11 16  1    @1 SHELTER (R.)
A14 01      @1 Atmospheric Chemistry Division, National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 6 aut. @Z 7 aut. @Z 9 aut. @Z 11 aut. @Z 12 aut. @Z 13 aut. @Z 15 aut. @Z 16 aut.
A14 02      @1 Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration @2 Princeton, New Jersey @3 USA @Z 5 aut.
A14 03      @1 Max Planck Institute for Meteorology @2 Hamburg @3 DEU @Z 8 aut.
A14 04      @1 Atmospheric Sciences, NASA Langley Research Center @2 Hampton, Virginia @3 USA @Z 10 aut.
A14 05      @1 Graduate School of Oceanography, Center for Atmospheric Chemistry Studies, University of Rhode Island @2 Narragansett, Rhode Island @3 USA @Z 14 aut.
A20       @2 TOP20.1-TOP20.23
A21       @1 2003
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000118312870630
A44       @0 0000 @1 © 2003 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 03-0384443
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] The tropospheric ozone budget during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign has been studied using two chemical transport models (CTMs): HANK and the Model of Ozone and Related chemical Tracers, version 2 (MOZART-2). The two models have similar chemical schemes but use different meteorological fields, with HANK using MM5 (Pennsylvania State University, National Center for Atmospheric Research Mesoscale Modeling System) and MOZART-2 driven by European Centre for Medium-Range Weather Forecasts (ECMWF) fields. Both models simulate ozone in good agreement with the observations but underestimate NOx. The models indicate that in the troposphere, averaged over the northern middle and high latitudes, chemical production of ozone drives the increase of ozone seen in the spring. Both ozone gross chemical production and loss increase greatly over the spring months. The in situ production is much larger than the net stratospheric input, and the deposition and horizontal fluxes are relatively small in comparison to chemical destruction. The net production depends sensitively on the concentrations of H2O, HO2 and NO, which differ slightly in the two models. Both models underestimate the chemical production calculated in a steady state model using TOPSE measurements, but the chemical loss rates agree well. Measures of the stratospheric influence on tropospheric ozone in relation to in situ ozone production are discussed. Two different estimates of the stratospheric fraction of O3 in the Northern Hemisphere troposphere indicate it decreases from 30-50% in February to 15-30% in June. A sensitivity study of the effect of a perturbation in the vertical flux on tropospheric ozone indicates the contribution from the stratosphere is approximately 15%.
C02 01  X    @0 001E02D04
C02 02  X    @0 001E02H02
C03 01  X  FRE  @0 Troposphère @5 26
C03 01  X  ENG  @0 Troposphere @5 26
C03 01  X  SPA  @0 Troposfera @5 26
C03 02  X  FRE  @0 Ozone @2 NK @2 FX @5 27
C03 02  X  ENG  @0 Ozone @2 NK @2 FX @5 27
C03 02  X  SPA  @0 Ozono @2 NK @2 FX @5 27
C03 03  X  FRE  @0 Modèle chimique @5 28
C03 03  X  ENG  @0 Chemical model @5 28
C03 03  X  SPA  @0 Modelo químico @5 28
C03 04  X  FRE  @0 Printemps @5 29
C03 04  X  ENG  @0 Spring(season) @5 29
C03 04  X  SPA  @0 Primavera @5 29
C03 05  X  FRE  @0 Traceur @5 30
C03 05  X  ENG  @0 Tracers @5 30
C03 05  X  SPA  @0 Trazador @5 30
C03 06  X  FRE  @0 Mésoéchelle @5 32
C03 06  X  ENG  @0 Mesoscale @5 32
C03 06  X  SPA  @0 Mesoescala @5 32
C03 07  X  FRE  @0 Vapeur eau @5 33
C03 07  X  ENG  @0 Water vapor @5 33
C03 07  X  SPA  @0 Vapor agua @5 33
C03 08  X  FRE  @0 Azote monoxyde @2 NK @2 FX @5 34
C03 08  X  ENG  @0 Nitric oxide @2 NK @2 FX @5 34
C03 08  X  SPA  @0 Nitrógeno monóxido @2 NK @2 FX @5 34
C03 09  X  FRE  @0 Interaction stratosphère troposphère @5 37
C03 09  X  ENG  @0 Stratosphere troposphere coupling @5 37
C03 09  X  SPA  @0 Interacción estratósfera tropósfera @5 37
C03 10  X  FRE  @0 Concentration @5 38
C03 10  X  ENG  @0 Concentration @5 38
C03 10  X  SPA  @0 Concentración @5 38
C03 11  X  FRE  @0 Taux perte @5 39
C03 11  X  ENG  @0 Loss rate @5 39
C03 11  X  SPA  @0 Porcentaje pérdida @5 39
C03 12  X  FRE  @0 Analyse sensibilité @5 40
C03 12  X  ENG  @0 Sensitivity analysis @5 40
C03 12  X  SPA  @0 Análisis sensibilidad @5 40
C03 13  X  FRE  @0 Phénomène transport @5 81
C03 13  X  ENG  @0 Transport process @5 81
C03 13  X  SPA  @0 Fenómeno transporte @5 81
C03 14  3  FRE  @0 Radical hydroperoxyle @2 NK @5 82
C03 14  3  ENG  @0 Hydroperoxy radicals @2 NK @5 82
N21       @1 272
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 03-0384443 INIST
ET : Budget of tropospheric ozone during TOPSE from two chemical transport models
AU : EMMONS (L. K.); HESS (P.); KLONECKI (A.); TIE (X.); HOROWITZ (L.); LAMARQUE (J.-F.); KINNISON (D.); BRASSEUR (G.); ATLAS (E.); BROWELL (E.); CANTRELL (C.); EISELE (F.); MAULDIN (R. L.); MERRILL (J.); RIDLEY (B.); SHELTER (R.)
AF : Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 6 aut., 7 aut., 9 aut., 11 aut., 12 aut., 13 aut., 15 aut., 16 aut.); Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration/Princeton, New Jersey/Etats-Unis (5 aut.); Max Planck Institute for Meteorology/Hamburg/Allemagne (8 aut.); Atmospheric Sciences, NASA Langley Research Center/Hampton, Virginia/Etats-Unis (10 aut.); Graduate School of Oceanography, Center for Atmospheric Chemistry Studies, University of Rhode Island/Narragansett, Rhode Island/Etats-Unis (14 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2003; Vol. 108; No. D8; TOP20.1-TOP20.23; Bibl. 1 p.1/4
LA : Anglais
EA : [1] The tropospheric ozone budget during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign has been studied using two chemical transport models (CTMs): HANK and the Model of Ozone and Related chemical Tracers, version 2 (MOZART-2). The two models have similar chemical schemes but use different meteorological fields, with HANK using MM5 (Pennsylvania State University, National Center for Atmospheric Research Mesoscale Modeling System) and MOZART-2 driven by European Centre for Medium-Range Weather Forecasts (ECMWF) fields. Both models simulate ozone in good agreement with the observations but underestimate NOx. The models indicate that in the troposphere, averaged over the northern middle and high latitudes, chemical production of ozone drives the increase of ozone seen in the spring. Both ozone gross chemical production and loss increase greatly over the spring months. The in situ production is much larger than the net stratospheric input, and the deposition and horizontal fluxes are relatively small in comparison to chemical destruction. The net production depends sensitively on the concentrations of H2O, HO2 and NO, which differ slightly in the two models. Both models underestimate the chemical production calculated in a steady state model using TOPSE measurements, but the chemical loss rates agree well. Measures of the stratospheric influence on tropospheric ozone in relation to in situ ozone production are discussed. Two different estimates of the stratospheric fraction of O3 in the Northern Hemisphere troposphere indicate it decreases from 30-50% in February to 15-30% in June. A sensitivity study of the effect of a perturbation in the vertical flux on tropospheric ozone indicates the contribution from the stratosphere is approximately 15%.
CC : 001E02D04; 001E02H02
FD : Troposphère; Ozone; Modèle chimique; Printemps; Traceur; Mésoéchelle; Vapeur eau; Azote monoxyde; Interaction stratosphère troposphère; Concentration; Taux perte; Analyse sensibilité; Phénomène transport; Radical hydroperoxyle
ED : Troposphere; Ozone; Chemical model; Spring(season); Tracers; Mesoscale; Water vapor; Nitric oxide; Stratosphere troposphere coupling; Concentration; Loss rate; Sensitivity analysis; Transport process; Hydroperoxy radicals
SD : Troposfera; Ozono; Modelo químico; Primavera; Trazador; Mesoescala; Vapor agua; Nitrógeno monóxido; Interacción estratósfera tropósfera; Concentración; Porcentaje pérdida; Análisis sensibilidad; Fenómeno transporte
LO : INIST-3144.354000118312870630
ID : 03-0384443

Links to Exploration step

Pascal:03-0384443

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Budget of tropospheric ozone during TOPSE from two chemical transport models</title>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hess, P" sort="Hess, P" uniqKey="Hess P" first="P." last="Hess">P. Hess</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Klonecki, A" sort="Klonecki, A" uniqKey="Klonecki A" first="A." last="Klonecki">A. Klonecki</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tie, X" sort="Tie, X" uniqKey="Tie X" first="X." last="Tie">X. Tie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, L" sort="Horowitz, L" uniqKey="Horowitz L" first="L." last="Horowitz">L. Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, J F" sort="Lamarque, J F" uniqKey="Lamarque J" first="J.-F." last="Lamarque">J.-F. Lamarque</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kinnison, D" sort="Kinnison, D" uniqKey="Kinnison D" first="D." last="Kinnison">D. Kinnison</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, G" sort="Brasseur, G" uniqKey="Brasseur G" first="G." last="Brasseur">G. Brasseur</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Atlas, E" sort="Atlas, E" uniqKey="Atlas E" first="E." last="Atlas">E. Atlas</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Browell, E" sort="Browell, E" uniqKey="Browell E" first="E." last="Browell">E. Browell</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Atmospheric Sciences, NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cantrell, C" sort="Cantrell, C" uniqKey="Cantrell C" first="C." last="Cantrell">C. Cantrell</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Eisele, F" sort="Eisele, F" uniqKey="Eisele F" first="F." last="Eisele">F. Eisele</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mauldin, R L" sort="Mauldin, R L" uniqKey="Mauldin R" first="R. L." last="Mauldin">R. L. Mauldin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Merrill, J" sort="Merrill, J" uniqKey="Merrill J" first="J." last="Merrill">J. Merrill</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Graduate School of Oceanography, Center for Atmospheric Chemistry Studies, University of Rhode Island</s1>
<s2>Narragansett, Rhode Island</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ridley, B" sort="Ridley, B" uniqKey="Ridley B" first="B." last="Ridley">B. Ridley</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Shelter, R" sort="Shelter, R" uniqKey="Shelter R" first="R." last="Shelter">R. Shelter</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">03-0384443</idno>
<date when="2003">2003</date>
<idno type="stanalyst">PASCAL 03-0384443 INIST</idno>
<idno type="RBID">Pascal:03-0384443</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000204</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Budget of tropospheric ozone during TOPSE from two chemical transport models</title>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hess, P" sort="Hess, P" uniqKey="Hess P" first="P." last="Hess">P. Hess</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Klonecki, A" sort="Klonecki, A" uniqKey="Klonecki A" first="A." last="Klonecki">A. Klonecki</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tie, X" sort="Tie, X" uniqKey="Tie X" first="X." last="Tie">X. Tie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, L" sort="Horowitz, L" uniqKey="Horowitz L" first="L." last="Horowitz">L. Horowitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lamarque, J F" sort="Lamarque, J F" uniqKey="Lamarque J" first="J.-F." last="Lamarque">J.-F. Lamarque</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kinnison, D" sort="Kinnison, D" uniqKey="Kinnison D" first="D." last="Kinnison">D. Kinnison</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, G" sort="Brasseur, G" uniqKey="Brasseur G" first="G." last="Brasseur">G. Brasseur</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Atlas, E" sort="Atlas, E" uniqKey="Atlas E" first="E." last="Atlas">E. Atlas</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Browell, E" sort="Browell, E" uniqKey="Browell E" first="E." last="Browell">E. Browell</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Atmospheric Sciences, NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Cantrell, C" sort="Cantrell, C" uniqKey="Cantrell C" first="C." last="Cantrell">C. Cantrell</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Eisele, F" sort="Eisele, F" uniqKey="Eisele F" first="F." last="Eisele">F. Eisele</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mauldin, R L" sort="Mauldin, R L" uniqKey="Mauldin R" first="R. L." last="Mauldin">R. L. Mauldin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Merrill, J" sort="Merrill, J" uniqKey="Merrill J" first="J." last="Merrill">J. Merrill</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Graduate School of Oceanography, Center for Atmospheric Chemistry Studies, University of Rhode Island</s1>
<s2>Narragansett, Rhode Island</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ridley, B" sort="Ridley, B" uniqKey="Ridley B" first="B." last="Ridley">B. Ridley</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Shelter, R" sort="Shelter, R" uniqKey="Shelter R" first="R." last="Shelter">R. Shelter</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2003">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical model</term>
<term>Concentration</term>
<term>Hydroperoxy radicals</term>
<term>Loss rate</term>
<term>Mesoscale</term>
<term>Nitric oxide</term>
<term>Ozone</term>
<term>Sensitivity analysis</term>
<term>Spring(season)</term>
<term>Stratosphere troposphere coupling</term>
<term>Tracers</term>
<term>Transport process</term>
<term>Troposphere</term>
<term>Water vapor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Troposphère</term>
<term>Ozone</term>
<term>Modèle chimique</term>
<term>Printemps</term>
<term>Traceur</term>
<term>Mésoéchelle</term>
<term>Vapeur eau</term>
<term>Azote monoxyde</term>
<term>Interaction stratosphère troposphère</term>
<term>Concentration</term>
<term>Taux perte</term>
<term>Analyse sensibilité</term>
<term>Phénomène transport</term>
<term>Radical hydroperoxyle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] The tropospheric ozone budget during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign has been studied using two chemical transport models (CTMs): HANK and the Model of Ozone and Related chemical Tracers, version 2 (MOZART-2). The two models have similar chemical schemes but use different meteorological fields, with HANK using MM5 (Pennsylvania State University, National Center for Atmospheric Research Mesoscale Modeling System) and MOZART-2 driven by European Centre for Medium-Range Weather Forecasts (ECMWF) fields. Both models simulate ozone in good agreement with the observations but underestimate NO
<sub>x</sub>
. The models indicate that in the troposphere, averaged over the northern middle and high latitudes, chemical production of ozone drives the increase of ozone seen in the spring. Both ozone gross chemical production and loss increase greatly over the spring months. The in situ production is much larger than the net stratospheric input, and the deposition and horizontal fluxes are relatively small in comparison to chemical destruction. The net production depends sensitively on the concentrations of H
<sub>2</sub>
O, HO
<sub>2</sub>
and NO, which differ slightly in the two models. Both models underestimate the chemical production calculated in a steady state model using TOPSE measurements, but the chemical loss rates agree well. Measures of the stratospheric influence on tropospheric ozone in relation to in situ ozone production are discussed. Two different estimates of the stratospheric fraction of O
<sub>3</sub>
in the Northern Hemisphere troposphere indicate it decreases from 30-50% in February to 15-30% in June. A sensitivity study of the effect of a perturbation in the vertical flux on tropospheric ozone indicates the contribution from the stratosphere is approximately 15%.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>108</s2>
</fA05>
<fA06>
<s2>D8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Budget of tropospheric ozone during TOPSE from two chemical transport models</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>EMMONS (L. K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HESS (P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KLONECKI (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TIE (X.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HOROWITZ (L.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LAMARQUE (J.-F.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KINNISON (D.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BRASSEUR (G.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>ATLAS (E.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>BROWELL (E.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>CANTRELL (C.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>EISELE (F.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>MAULDIN (R. L.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>MERRILL (J.)</s1>
</fA11>
<fA11 i1="15" i2="1">
<s1>RIDLEY (B.)</s1>
</fA11>
<fA11 i1="16" i2="1">
<s1>SHELTER (R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>15 aut.</sZ>
<sZ>16 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Atmospheric Sciences, NASA Langley Research Center</s1>
<s2>Hampton, Virginia</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Graduate School of Oceanography, Center for Atmospheric Chemistry Studies, University of Rhode Island</s1>
<s2>Narragansett, Rhode Island</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
</fA14>
<fA20>
<s2>TOP20.1-TOP20.23</s2>
</fA20>
<fA21>
<s1>2003</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000118312870630</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2003 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>03-0384443</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] The tropospheric ozone budget during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign has been studied using two chemical transport models (CTMs): HANK and the Model of Ozone and Related chemical Tracers, version 2 (MOZART-2). The two models have similar chemical schemes but use different meteorological fields, with HANK using MM5 (Pennsylvania State University, National Center for Atmospheric Research Mesoscale Modeling System) and MOZART-2 driven by European Centre for Medium-Range Weather Forecasts (ECMWF) fields. Both models simulate ozone in good agreement with the observations but underestimate NO
<sub>x</sub>
. The models indicate that in the troposphere, averaged over the northern middle and high latitudes, chemical production of ozone drives the increase of ozone seen in the spring. Both ozone gross chemical production and loss increase greatly over the spring months. The in situ production is much larger than the net stratospheric input, and the deposition and horizontal fluxes are relatively small in comparison to chemical destruction. The net production depends sensitively on the concentrations of H
<sub>2</sub>
O, HO
<sub>2</sub>
and NO, which differ slightly in the two models. Both models underestimate the chemical production calculated in a steady state model using TOPSE measurements, but the chemical loss rates agree well. Measures of the stratospheric influence on tropospheric ozone in relation to in situ ozone production are discussed. Two different estimates of the stratospheric fraction of O
<sub>3</sub>
in the Northern Hemisphere troposphere indicate it decreases from 30-50% in February to 15-30% in June. A sensitivity study of the effect of a perturbation in the vertical flux on tropospheric ozone indicates the contribution from the stratosphere is approximately 15%.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001E02D04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001E02H02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Modèle chimique</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Chemical model</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Modelo químico</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Printemps</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Spring(season)</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Primavera</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Traceur</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Tracers</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Trazador</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Mésoéchelle</s0>
<s5>32</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Mesoscale</s0>
<s5>32</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Mesoescala</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Vapeur eau</s0>
<s5>33</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Water vapor</s0>
<s5>33</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Vapor agua</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Azote monoxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>34</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Nitric oxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>34</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Nitrógeno monóxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Interaction stratosphère troposphère</s0>
<s5>37</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Stratosphere troposphere coupling</s0>
<s5>37</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Interacción estratósfera tropósfera</s0>
<s5>37</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Concentration</s0>
<s5>38</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Concentration</s0>
<s5>38</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Concentración</s0>
<s5>38</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Taux perte</s0>
<s5>39</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Loss rate</s0>
<s5>39</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Porcentaje pérdida</s0>
<s5>39</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Analyse sensibilité</s0>
<s5>40</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Sensitivity analysis</s0>
<s5>40</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Análisis sensibilidad</s0>
<s5>40</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Phénomène transport</s0>
<s5>81</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Transport process</s0>
<s5>81</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Fenómeno transporte</s0>
<s5>81</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Radical hydroperoxyle</s0>
<s2>NK</s2>
<s5>82</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Hydroperoxy radicals</s0>
<s2>NK</s2>
<s5>82</s5>
</fC03>
<fN21>
<s1>272</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 03-0384443 INIST</NO>
<ET>Budget of tropospheric ozone during TOPSE from two chemical transport models</ET>
<AU>EMMONS (L. K.); HESS (P.); KLONECKI (A.); TIE (X.); HOROWITZ (L.); LAMARQUE (J.-F.); KINNISON (D.); BRASSEUR (G.); ATLAS (E.); BROWELL (E.); CANTRELL (C.); EISELE (F.); MAULDIN (R. L.); MERRILL (J.); RIDLEY (B.); SHELTER (R.)</AU>
<AF>Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut., 6 aut., 7 aut., 9 aut., 11 aut., 12 aut., 13 aut., 15 aut., 16 aut.); Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration/Princeton, New Jersey/Etats-Unis (5 aut.); Max Planck Institute for Meteorology/Hamburg/Allemagne (8 aut.); Atmospheric Sciences, NASA Langley Research Center/Hampton, Virginia/Etats-Unis (10 aut.); Graduate School of Oceanography, Center for Atmospheric Chemistry Studies, University of Rhode Island/Narragansett, Rhode Island/Etats-Unis (14 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2003; Vol. 108; No. D8; TOP20.1-TOP20.23; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>[1] The tropospheric ozone budget during the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign has been studied using two chemical transport models (CTMs): HANK and the Model of Ozone and Related chemical Tracers, version 2 (MOZART-2). The two models have similar chemical schemes but use different meteorological fields, with HANK using MM5 (Pennsylvania State University, National Center for Atmospheric Research Mesoscale Modeling System) and MOZART-2 driven by European Centre for Medium-Range Weather Forecasts (ECMWF) fields. Both models simulate ozone in good agreement with the observations but underestimate NO
<sub>x</sub>
. The models indicate that in the troposphere, averaged over the northern middle and high latitudes, chemical production of ozone drives the increase of ozone seen in the spring. Both ozone gross chemical production and loss increase greatly over the spring months. The in situ production is much larger than the net stratospheric input, and the deposition and horizontal fluxes are relatively small in comparison to chemical destruction. The net production depends sensitively on the concentrations of H
<sub>2</sub>
O, HO
<sub>2</sub>
and NO, which differ slightly in the two models. Both models underestimate the chemical production calculated in a steady state model using TOPSE measurements, but the chemical loss rates agree well. Measures of the stratospheric influence on tropospheric ozone in relation to in situ ozone production are discussed. Two different estimates of the stratospheric fraction of O
<sub>3</sub>
in the Northern Hemisphere troposphere indicate it decreases from 30-50% in February to 15-30% in June. A sensitivity study of the effect of a perturbation in the vertical flux on tropospheric ozone indicates the contribution from the stratosphere is approximately 15%.</EA>
<CC>001E02D04; 001E02H02</CC>
<FD>Troposphère; Ozone; Modèle chimique; Printemps; Traceur; Mésoéchelle; Vapeur eau; Azote monoxyde; Interaction stratosphère troposphère; Concentration; Taux perte; Analyse sensibilité; Phénomène transport; Radical hydroperoxyle</FD>
<ED>Troposphere; Ozone; Chemical model; Spring(season); Tracers; Mesoscale; Water vapor; Nitric oxide; Stratosphere troposphere coupling; Concentration; Loss rate; Sensitivity analysis; Transport process; Hydroperoxy radicals</ED>
<SD>Troposfera; Ozono; Modelo químico; Primavera; Trazador; Mesoescala; Vapor agua; Nitrógeno monóxido; Interacción estratósfera tropósfera; Concentración; Porcentaje pérdida; Análisis sensibilidad; Fenómeno transporte</SD>
<LO>INIST-3144.354000118312870630</LO>
<ID>03-0384443</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000204 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000204 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:03-0384443
   |texte=   Budget of tropospheric ozone during TOPSE from two chemical transport models
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023